Convex Combinations of Single Source Unsplittable Flows
نویسندگان
چکیده
In the single source unsplittable flow problem, commodities must be routed simultaneously from a common source vertex to certain destination vertices in a given digraph. The demand of each commodity must be routed along a single path. In a groundbreaking paper Dinitz, Garg, and Goemans [4] prove that any given (splittable) flow satisfying certain demands can be turned into an unsplittable flow with the following nice property: In the unsplittable flow, the flow value on any arc exceeds the flow value on that arc in the given flow by no more than the maximum demand. Goemans conjectures that this result even holds in the more general context with arbitrary costs on the arcs when it is required that the cost of the unsplittable flow must not exceed the cost of the given (splittable) flow. The following is an equivalent formulation of Goemans’ conjecture: Any (splittable) flow can be written as a convex combination of unsplittable flows such that the unsplittable flows have the nice property mentioned above. We prove a slightly weaker version of this conjecture where each individual unsplittable flow occurring in the convex combination does not necessarily fulfill the original demands but rounded demands. Preliminary computational results based on our underlying algorithm support the strong version of the conjecture.
منابع مشابه
On the Single-Source Unsplittable Flow Problem
If the necessary cut condition is satisfied, we show how to compute an unsplittable flow satisfying the demands such that the total flow through any edge exceeds its capacity by at most the maximum demand. For graphs in which all capacities are at least the maximum demand, we therefore obtain an unsplittable flow with congestion at most 2, and this result is best possible. Furthermore, we show ...
متن کاملStochastic Unsplittable Flows
We consider the stochastic unsplittable flow problem: given a graph with edge-capacities, k source-sink pairs with each pair {sj , tj} having a size Sj and value vj , the goal is to route the pairs unsplittably while respecting edge capacities to maximize the total value of the routed pairs. However, the size Sj is a random variable and is revealed only after we decide to route pair j. Which pa...
متن کاملOn the minimum cost multiple-source unsplittable flow problem
The minimum cost multiple-source unsplittable flow problem is studied in this paper. A simple necessary condition to get a solution is proposed. It deals with capacities and demands and can be seen as a generalization of the well-known semi-metric condition for continuous multicommdity flows. A cutting plane algorithm is derived using a superadditive approach. The inequalities considered here a...
متن کاملSingle-source k-splittable min-cost flows
Motivated by a famous open question on the single-source unsplittable minimum cost flow problem, we present a new approximation result for the relaxation of the problem where, for a given number k, each commodity must be routed along at most k paths. © 2009 Elsevier B.V. All rights reserved.
متن کاملOn the k-Splittable Flow Problem
In traditional multi-commodity flow theory, the task is to send a certain amount of each commodity from its start to its target node, subject to capacity constraints on the edges. However, no restriction is imposed on the number of paths used for delivering each commodity; it is thus feasible to spread the flow over a large number of different paths. Motivated by routing problems arising in rea...
متن کامل